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SUMMARY
This paper deals with the problem of finding error bounds for cubic spline interpolation of functions of the class
C*[a, b], and C*[aq, b], by examining a relationship between cubic spline interpolation and piecewise cubic Hermitian
interpolation.

The method also gives an indication of what happens, in the case of almost uniform meshes, especially if the approx-
imated function is in the class C*[a, b].

Comparison is made with recent work carried out by K. E. Atkinson [3], in dealing with natural cubic spline inter-
polation.

1. Introduction

Let h denote a subdivision of the interval [a, b] of the real x-axis
h={a=xy<x,<..<x,=b}. (1.1)
A cubic spline, or spline on the mesh # is defined by the following relations
ya(x)eC?(a, b]
yu(x) = yi+pi(x—x) +5q,(x — x;)* + &, (x — x;)° (1.2)
for x,£x<x,.,, 0ZiZn—1.

The class of all splines on the mesh % will be denoted by Y,.
From the continuity requirements in (1.2) the following set of linear relations between the
polynomial coefficients can be derived

a  Apj-1+ 20ty =3{u;dy;+ 24y}, for 1Sj<n—1,

b _ 6Ay0—4p0_2p1 _ 6Ayn~1_4pn_2pn—1
. %——*h—, 4, = — W
1 n
2 .
¢ 4 = —gj-1 F F{Pj_l’jﬂ}: 1gj=n—1 (1.3)
J .
d. rj q]+1 q] 0§]§n“1
By
where
h.
hi=x,—x;_4, A =3+ =1—2.
JE X X1 J hj+hj+1’ Hj /1_13
Yi+1—JY; :
Ay, = 2120
! h_1+1

The set (1.3) consists of 3n equations between 4n+ 3 coefficients.
It follows that if n+ 3 independent extra relations are given, a spline is uniquely determined.
We can define several types of splines, interpolating a given function f(x) in the n+ 1 mesh-
points x;, and satisfying two extra so-called end conditions.
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The first of these interpolating splines, denoted by y,(f; x), is defined by
vu(fi %)€Y, .
(s x) =f(x), O=sisn. (1.4)
w(fix)=f"(x), i=0andi=n.
All coefficients p; can be determined by solving the system (1.3.a) together with the condi-
tions : po=f"(xo), P»=f"(x,)- The system (1.3.b,c) yields the values of the g, and finally (1.3.d)
yields the values of the ;.

The spline interpolation y,(f; x) will be referred to as the optimal interpolating spline, since
it has the best approximation property

b
f (s X)—f ()2 dx gf (2(x)—f"(x)}2dx for all ze ¥, . (L5)
Another type of spline interpolation, denoted by y#¥(f; x), is defined by

y¥(f; ey,
Vi %) =f(x;), 0<isn. (1.6)
wifix)=f"(x), i=0Oandi=n.
This spline interpolation can be computed by substituting g, =f" (x,), g,=f" (x,)in (1.3.b), and
solving the p; from the system (1.3.a,b); (1.3.c) and (1.3.d) serve to determine q;, gy, .-+, ¢,_;

and rg, 7y, ..., ¥,—; Dy substitution.
A third type of spline interpolation is the so-called natural spline interpolation, defined by

Fl(fi x)eY,
Wlfsx)=flx), 0=Zi<n. (1.7)
Pulfs %) =0, i=0andi=n.

‘This spline has the minimum norm property

J G ) }de<f (s %)) dx (1L9)
for all interpolating z(f; x)eC*[a, b] .
Defining the splines I, (x) and I,(x) by

IOE)Iha lne),ha
lo(x;) =1, (x;)) =0, 0gign.

77 t’ (1-9)

lO (XO) = ln (xn) =1

I5(xg) = I (x0) = 0.
will show that the following relation between y§(f; x) and j, (f; x) holds

Fulfs %)= yE(f5 ) =" (%) lo(x) =f " (xa) 1u(x) - (1.10)

The error E,(f; x) of a spline interpolation is defined by

Ey(f; x) =f(x)— (S5 x) . (1.11)
Now let '

Al = Jmax h;, and ||g(x)|| = maxblg( x)|,

EjsEn asxs

then if fe C*[a, b], the error satisfies the following inequality

IEx(f; x)l| < K(f):[|Hl*

(1.12)

NEX (f; 2l < K*(f)llA*-
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Errors in cubic spline interpolation 109

The purpose of this paper is to find the best possible values for the constants K(f) and
K*(f).

In [2] and [3] an integral representation for the error is used in order to obtain error
estimates.

E,(f: %) =J:K(x, O™ (6)dt

. (1.13)
B (%)= | K+ 0™ (0de
where K (x, t) and K*(x, t) are functions of the class C*[a, b] with respect to x and ¢.
Obviously the following relations hold
b
B 90 = | 1K 9]
(1.14)

IWMﬂéﬁmmeWW-

Atkinson [ 3] derives the following bounds for the integral of |[K*(x, t)|, in cases of uniform
meshes

b
00156 ]A) 2 (x —x;) (X, — X) <J |K*(x, £)|dt <

<1LA8JAI2(x—x)(x; 41— %), X=<x=ZX;4q 0ZiZn—1. (1.15)

An improved version of this result will be given in section III.
2. Relation between Cubic Spline Interpolation and Piecewise Cubic Hermitian Interpolation

The classical piecewise cubic Hermitian interpolation can be defined by the following relations

yu(f; x)eC'[a, b]
ya(f; X) = yit ai(x—x;) +3bi(x —x;)* + ¢ (x — x,)°
for x;=x=<x;,,,, 0gign—1 (2.1)

yfi(f;xi)=f$xi) 0<i<n.
ya(fs x)=f"(x)
Therefore the piecewise cubic Hermitian interpolation is a piecewise cubic function, having

a continuous first derivative on [a, b]. Furthermore, if fe C*[ 4, b], the error can be expressed
as follows

Ea(f: %) =) ~yu(; x) = BT g
for x;<x=<x;1,, xiééiéxi+1, 0sisn—1. (22)

which is a classical result.

Therefore the order of the approximation is O(]|A||*), which is in agreement with the errors
E,(f, x) and Ef(f; x) of the spline interpolations.

The above description shows that a similarity exists between cubic spline interpolation and
piecewise cubic Hermitian interpolation.

Let us denote the difference of the two approximations by z(x) in order to examine this
similarity

z(x) = yu(f; X) = yu(f3 X) = En(f; %) — Ex(f; X) (2.3)
and similarly:

Journal of Engineering Math., Vol. 3 (1969) 107-117



110 P. Sonneveld

2*(x) = yu(f x) = y¥(f; x) = E¥(f; x) —Eu(f; ) . (2.4)
Then it follows from (1.12) and (2.2)
lzll = O(lIAl1*),  llz*I = O(IHl*), if feC*[a,b]. (2.5)

Obviously z(x) and z*(x) are piecewise cubics, satisfying the relations

z(x)eC'[a,b], z*(x)eC'[a, b].
z(x) =0, z¥(x)=0, for0<i<n.

2.6
2'(x;) = Ex(f; x) — Ex(fs xi) = Ex(f; x;), for0<i<n, 26)
¥ (x)=E¥ (f; x)—Ex(f; x) = E¥ (f; x;), for0<ign
Now define a set of functions Q,(x) as follows
e o . 2
(c—x) (22} x<x<x,, 0Sisn—1,
' hivy
ilxX) = —x;i_1\*
%) (x—xi)<x ;‘ 1) . X SxSx, 1Si<n. 2.7)
0 XS X5, X2X54 -

It follows that Q;(x) is a piecewise cubic function belonging to C'[a, b], and satisfying the
relations

Qi(x;)=0

, 0if i) , .
Qi(xj)zfs,.j={1 ” i:j. for0<i<n, 0<j<n.. (2.8)

By differentiating (2.7) two times with respect to x, we get

77 2
F+) = — s {20440 511}
J
for 0<i<n 0Zj=n-1

1 2
L Qi (x;—) = 7 {20,;40: -1}
J

for 0<ign, 1<j<n. (2.9)

Now from (2.8) and (2.6) it follows that z(x) and z*(x) can be expressed in terms of the func-
tions Q;(x)

z*(x) = i z¥ Q;(x), ¥ =z%(x). . (2.10)

From (2.9) it is obvious that z(x) and z*(x) have second derivatives which in general are
discontinuous in the mesh-points. Furthermore using the definitions (2.3) and (2.4) we find the
following relations

6z"(x;) = OE; (f; x)) — 6Ex(f; x;) = — 0Eq(f; x))
8z*'(x;) = —OEx(f; x;) for1Zign—1 (2.11)
where dg(x) =g(x+)—g(x—).
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Substituting (2.9) and (2.10) in (2.11), we find the following n— 1 relations between the z; and
SEx(f; x))

h; h;
1 i A 5.0 E” .
h hl+1 (5 (f, xl)

hh1+1
h +h1+1

a. /'Lizg_l—l-ZZé—l-ﬂizé_,_l
(2.12)

*/ %/ 7 1
b, Az 42z bz = 2

OE%(f; x;)
where A; and y; have the meaning as defined in (1.3).
Furthermore we find from (2.3)
Z'(x) = 2'(x,) =0 (2.13)
and from 2.4) |
2 (xo) = E}" (fs xo) — Eg(fs x0) = — Ef(f; xo)

2.14
2% (x,) = B2 (f: x,) — By (f3 %) = —Ea(f3 %) (2.14)

from which it follows by substitution of (2.9) and (2.10)
278+ 28 = +3hy Eg(f: xo) 219

22*,—'—2" 1= %hnElFlI(f: xn) *

The system (2.12.a) together with (2.13), yields a uniquely solvable system of equations for
the z; if 0E(f; x;) are known, and so does the system (2.12.b) together with (2.15) for the z}".

In order to obtain an expression for SEg(f; x;) we examine Taylor’s expansion for f(x) in the
neighbourhood of x=x;

K F) =10+ (e—xi)f " (63) +3 0 — %) 1" (3;) + 5 (x — %, ()
+ J ——(x;t) Y ()dr . (2.16)
= §;(x) + E;(x) .

The piecewise cubic Hermitian interpolation of f(x) can be written as

ya(f; x) = yu(Si; x) + yu(E;; %), (2.17)
and since S;(x) is its own piecewise cubic Hermitian interpolation this can be reduced
yalfx) = Si(x) + yu(Ei; x) - (2.18)

Hence it follows for Ex(f; x):
Eq(f; x) = 8i(x) + E;(x) — $:(x) — yu (E;; x)

2.19
= Ei(x) — yu(E:; x) = Eg(E;; x) . (2.19)
Now since E;(x;) = Ej(x;) = 0, the following relations can easily be verified
X=X —i\X) — & X
yH(Ei;x):Ei(xiH){ Qh( —— )}-i—
i+1
FE{(x;41)Qir1(x), for x;=x= x4, (2.20)
xi_x+ X + i—1(x
yH(Ei;x)=Ei(xi_l){ Y (h_) [ )}+

+Ei(x;-1)Qi-1(x), forx; Sx=x;.

Differentiating (2.20) two times with respect to x and substituting x = x;, we find by making
use of (2.9)
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ya(Es x;+) = {3E;(x;4 1) = Ei(X; 4 1) his 1}

T2
h1+1

(221)
va(Es xi—) = F {3Ei(xi— 1)+ Ei(x;— 1) 1} -

Substituting the integral expression for E;(x), given by (2.16), we can reduce (2.21) to the
following form

Xi+1 t 2

Bt = [ E = g o
Xi i+1
. (2.22)

7" . . i (xi—l—t)z v
ya(Es x—) = *“‘h“;“*‘(xi—t)f (t)at
Now if we substitute these results in (2.19) and bear in mind that E;'(x;) =0, we finally arrive
at the following result

Xi+1

Eq(f:xi4) = j 0fY O, 0<i<n—1

(2.23)

Xi—

E;;(f;xi—)=j' 0O W, 1<isn.

Xi

from which it follows
Xi+1 b
SER(f; xi).—_J Q:(e)f ™ (t)dx =f 0™ ()dx for1<is<n-—1. (2.24)

With the aid of (2.23) and (2.24), we can now reduce the equations (2.12), (2.13) and (2.14) to
the following form

a {/Q.ij_1+2Zj+ﬂjZ;‘+1=Rj, léjé n—1

zo=12,=0.
° (2.25)
{iz*’1+22 "+u;z¥ = R; 0<j=n
b.
io—ﬂn—O, uO_’ln_l'
with
~b| 0000k, 0sisn
Vj=ﬂjhj+1, 0=jsn—1
Vo= Ah,=h,.

The systems (2.25.a) and (2.25.b) have the same structure as the defining equations (1.3),
and can also be derived directly from the defining equations. This is done by substituting
pi=Vilf; x;)= f'(x;) —z;in (1.3.2). Applying a Taylor series expansion with integral remainder
to the resulting right-hand members, yields again the systems (2.25).

Although this procedure is much easier to deal with, the present derivation of the equations
(2.25) yields some more information, and seems to be more consistent with the development of
an error analysis. One of the consequences of the system (2.25) is the possibility of deriving the
kernels K (x, t) and K*(x, t) as defined in (1.13) and all their properties from the system (2.25)
together with (2.3) and (2.20). This, however, is beyond the purpose of this paper.

3. Error Bounds

For the purpose of obtaining bounds on z(x) and z*(x) we make use of the fact that a uniform
upper bound for the right-hand members of (2.25) is also a uniform upper bound for the solu-
tion. For the sake of simplicity this will be shown for the system (2.2‘5.a) only.
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The system reads
AiZiy+2Z5+ iz = Ry, Isjsn-1
zp=2,=0.

Let |z] = max |z}, then the following inequality holds:

1€jsn—-1

12z = |R;— Aizio 1 — piziv 1| S IR + 2] (32)
since A;+ p;=1. It follows

|zl = IR . : (3.3)
Nowlet M = max |R}, then

15jsn—1
lZj <M, 1£j€n—1. (3.4
In the same way we have
[zZ¥|=M*, 05j=n

where M* = max |Rj . (3.5)

0<j=n
In (2.25) R; is given by an integral, which can be rearranged in the following form
h.h. 1
R;=1 #J (A=)t {h3  f™V (x4 by ) — RIS (x;— hy1) } dt
J j+1J0

for 1£j<n-1
1

Ry = %h?J (L—2)%tf™ (xo+hyt)dt (3.6)
0

1
R, = —%hfj (1= tf" (x,— h,t)dt .
0

Now since (1—t)?t is a non-negative function it follows
IRJi _214_ h]h_]+1(h2+h]+l)
hi+h;,
IRol <2z B3I/ (3.7)
IR <2z B3IFMI
Using the mesh norm, (3.7) can be simplified by
IRJ S AIRPI™M,  0<jsn. (38)
Applying (3.4) we get
] <z lIWPIM, 1Sjsn-1. (3.9)
From (3.9) we can construct a bound on z(x) by using the relation (2.7) and (2.10)

(x=x)(xi 11 —x)

z(x) = T_ {Z( Xi+1 ™ Z£+1(x—xi)}

IIA

™, 1gjsn-1

for ;< x=x;,,,0Zign-1
from which it follows
—x)(xs | — AE
IZ(x)I é (x xl)(xl+1 x)” ”
24 hiyy
for x,£x<x;,,, 0Zig<n—1.

(3.11)
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Finally using the relations (2.3) and (2.2)
E,(f;x) = Eg(f; x)+z(x)

Ex(f;x) = (X_Xi)Z(z)ZH—X)ZfW(fi)

we arrive at the result

;) s B0 = -+ B

for ;< x<x;,,, 0Z5in—1.

The same procedure applied to z*(x) leads to the same result for E¥(f; x):

() = O sy Wy oy

P. Sonneveld

(3.12)

(3.13)

(3.14)

This last result is somewhat more specific than the result Atkinson obtained in [3] for E;*(f; x).
In fact his bounds for the integral in (1.15) can be improved upon in the following way :
Let ¢ be any positive number. Then for every fixed xe[x;; x;, ] a function f exists with

Ilf™| =1, so that:
ﬁm@mmﬂqwmwéﬁmmmm.
It follows from (3.15) and (3.14):
K{K*(x, Hdt < ———«—(x_xi)(;{ﬂ_x) {(x—xi)(xiH -x) + LLT?} .

Furthermore for any v > 1 a function g(x) exists, satisfying the relations:

d%@=«—nﬂ}—<x_xﬁ-—(&“"“)}, XS X< Xy, 0SjSn—1.

hj+1 hiy1
Then ||g"|| =1, and it follows from (3.6):
Rj = (_l)i|Rj| .
By (hF+ k%))
R| = L it jt1 N 1<i<n—1
| ]I 24 hj+hj+1 (1 8)7 =Jj=n
h3 h 12
= — —_ R = s 1—- = —
Introducing the mesh ratio g as follows:
' 1Al
f = max
1sjzn B
we can write
R;=(—1Y[R}
m <|RjSM
ith
wi M—W(1—£)=”h”3 . 12 m=M
24 24 v+2)(v+3)§° i

Now we can express zF' as follows

and applying the same reasoning as in the beginning of this chapter we get
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[0] =06;<max(M—|R})=M-m. (3.22)
J

Hence the z¥’ satisfy the relations:
*

zj = (—I)lejk,l ) < i<
Sjsn. 3.23
mlyisy ORIET 2

Hence the error E}(g; x) can be expressed as follows

X—X)(X;31—X) m+0;,M—m
|E¥(g; x)| = (x—xi)(xiﬂ—x){( X1 =) + ( )} (3.24)
24 iy
- with 0 6,< 1. So |Ef(g; x)| has the following lower bound:
(x| < g 629
24 ity
Since
b b
(o 915 | 1K o ™) = | 1K, e
and using (3.20), we find if v tends to infinity :
— X . —_ 2
W{(x—xi)(xiﬂ—x) + ”ﬁ” }g J |K*(x, t)|dt . (3.26)

Combining (3.16) and (3.26) we arrive at:
(x—x;)(x;4 1 —X) LY 1Al J *
—{(x X)(x;4 1 —%) + 7 } |K*(x, 1) dt <

24

x_xi Xi —X
< o = )=+ BUR] B27)
If the mesh is uniform, then f=1, and we have exactly:

[/ 1w e = =D i (3.28)

4, Improvement of the Bounds on E,(f; x) if feC’[a, b]

The error of optimal cubic spline interpolation can be more specifically bounded if fe C* [a, b].
In that case an integration by parts can be applied to the integrals in (3.6)

h;h, !
R; :%h-iif-:ljo( — 2t {B e f T ey By 8) = BESY (x;— bt} de =
7
h.h; hi,  —h?
_ 1 "+ jt1 J oIV
=i ih., 1 ) M
1(1 )3 v 371V
+ 12 (L+36) [R5 of ™V (st By 1 1) + B3 (x;— hyt) ] de (4.1)
(h1+1 h)h1+1 v h3+1+h1
= +80 70— h;h
24 f ( ) 60h+h}+1 _]+1f ( )

with x;_ | £ &< x4, 1SjSn—1.
Introducmg the local mesh norm

lhd| = max {h;, by, } (4.2)
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and the local mesh ratio:

Wil
gm max{ ol ,'j” @3)
then it follows
1 1
sl =)l = (1 - E)nhiua . (4.4)

Now if the mesh is uniform, §; equals 1 and hence we may regard 1 — 1/, as a local measure for
nonuniformity

1

- =5 0<g=<I1. (4.5)
Bi
If the local nonuniformity is bounded by:
g<e for 1Sisn—1 (4.6)
then
g(l—g)s4 ifexd
g(l—g)Se(l—g) ifest. #7)
Define the monotonic nondecreasing function 9(c) as
1, 3<est
90410, 05res )
then it follows:
hihig s (B —h) S 53R < 59()IIHI> . (4.9)
The expression (4.1) for R; can now be bounded:
3e
IRjl = 5(3) AR ™E+ S5 IR - (4.10)

If the mesh is nearly uniform, the first term of (4.10) will be very small ; quantitatively we can
write '

IR} = OellWIP L)+ ORI - (4.11)
If e=0(|HlI)
IRA< <ol 1LY+ ORI LA™ - - 412

The result (4.12) has a bearing on parametric spline interpolation of smooth curves, where
only nearly uniform meshes can be constructed if uniform meshes are required.
Applying (3.4) we get:

1z = %IIMPIUIVII +as A (4.13)
and according to (2.6) it follows:

|EL(f; x)l < %(?thlsllfwll +asllAl* I (4.14)
This result is an extension of the statement

|E4(f; x)l = O(I1All*) (4.15)

for nearly uniform meshes.
Finally by applying (3.10) and (3.12) we arrive at the following bound for E,(f; x):
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91 )= {5 [ 3|+ MUl ),

X, SX<x1, (416)

which bound is much more specific than that given by (3.14). For uniform meshes the expres-
sion (4.16) reads:

o6 50 X EXE X0, (4.17)
Further refinements of the error analysis can be made by examining the equations (2.25)
thoroughly; this, however, is beyond the purpose of this paper.
Extensions of the theory are possible in cases of periodic splines, which occur in approxima-
tion of periodic functions and in parametric spline interpolation of closed smooth curves.

v v
(£ 905 o) = {120 IO,
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