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SUMMARY 
This paper deals with the problem of finding error bounds for cubic spline interpol~ition of functions of the class 
C 4 [a, b], and C 5 [a, b], by examining a relationship between cubic spline interpolation and piecewise cubic Hermitian 
interpolation. 

The method also gives an indication of what happens, in the case of almost uniform meshes, especially if the approx- 
imated function is in the class C 5 [a, b]. 

Comparison is made with recent work carried out by K. E. Atkinson [3], in dealing with natural cubic spline inter- 
polation. 

I. Introduction 

Let  h denote  a subdiv is ion  of the in terval  I-a, b] of the real  x-axis  

h =  { a =  X o < X l  < . . . < x , = b }  . (1.1) 

A cubic  Spline, or  spl ine on the mesh  h is defined by  the fol lowing re la t ions  

yh(X)~CE[a, b] 

Yh (X) = Yi-k- Pi (X -- Xi) + �89 ql (X -- Xl) 2 + ~ r i (X - -  Xl) 3 (1.2) 

for xi<=x<=xi+l, O<_i<n--1 .  

The class of  all  splines on  the mesh  h will  be deno t e d  by  Yh. 
F r o m  the con t inu i ty  requ i rements  in (1.2) the fol lowing set of l inear  re la t ions  between the 

p o l y n o m i a l  coefficients can  be der ived  

2jp~_ 1 + 2 p j + / ~ p j +  1 = 3 {p~Ayj+ 2 jAy j_  ~}, for 1 <j__< n -  1 a .  

b. 
6Ayo - 4p0 - 2pl  6Ay,_  1 - 4p, - 2p,_ 1 

qo = hi ' q" - - h, 

2 
c. qj = - q j - 1  + V. { P j - P j - 1 } ,  l < j < n - 1  (1.3) 

nj 

d. rj - q j + l - q j  O < j < n - 1  
hj+ 1 ' 

where  

hi+ 1 
hj = x j -  x j_ 1,  2j - h j+--h j-+ a ' #j  = 1 - 2 j ,  

Ayj - y J+ 1 - Yj 
hi+ 

The set (1.3) consists  of  3n equa t ions  be tween 4n + 3 coefficients. 
I t  fol lows tha t  if n + 3 i ndependen t  ex t ra  re la t ions  are  given, a spline is uniquely  de te rmined .  

W e  can define several  types  of  splines, i n t e rpo la t ing  a given f u n c t i o n f ( x )  in the  n + 1 mesh-  
po in t s  xi, and  satisfying two ex t ra  so-cal led  end condi t ions .  
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The first of these interpolating splines, denoted by Yh (f; X), is defined by 

Yh (f; x) ~ yh. 
Yh (f; Xl) = f ( x i ) ,  0 < i <  n .  (1.4) 
y'h(f; x~) =f ' (x~) ,  i =  0 and i =  n.  

All coefficients pj can be determined by solving the system (1.3.a) together with the condi- 
tions : Po =f ' (xo),  p , = f ' ( x , ) .  The system (1.3.b,c) yields the values of the qj, and finally (1.3.d) 
yields the values of the rj. 

The spline interpolation Yh (f; X) will be referred to as the optimal interpolating spline, since 
it has the best approximation property 

t {Yh( f ,  x ) - - f " ( X ) }  2dx  < b " " { z " ( x ) - f " ( x ) } Z d x  for all zEYh. (1.5) 
,) a 

Another  type of spline interpolation, denoted by y* (f; x), is defined by 

y* (f; x) e Yh 
y ~ ( f ;  x ~ ) = f ( x i )  , 0<_ i <  n .  (1.6) 
Y'~"(f; x i ) = f " ( x i ) ,  i =  0 and i =  n .  

This spline interpolation can be computed by substituting qo = f "  (Xo), q, = f "  (x,) in (1.3.b), and 
solving the pj from the system (1.3.a,b) ; (1.3.c) and (1.3.d) serve to determine ql, q2,.. . ,  q , -  1 
and ro, rl, ..., r,_ ~ by substitution. 

A third type of spline interpolation is the so-called natural spline interpolation, defined by 

37h (f; x) e Yh 
Yh(f;  Xi) =f(xi) ,  0 <  i<  n .  
37h (f; Xi) = 0, i = 0 and i = n .  

This spline has the min imum norm property 

f {Y~'h'(f; x)} 2 d x <  {z"(f; x ) } 2 d x  
a (t 

for all interpolating z ( f ;  x ) e  C 2 [a, b] . 

Defining the splines lo(x ) and l , (x)  by 

loe Yh, 1,e Yh, 

lO(xi) = l,(xi) = O, 0<_ i<_ n .  

l'~ (Xo) = l': (x,) = 1 

l'~ (x,)  = l': (Xo) = O . 

will show that the following relation between y~' (f; x) and 37h (f; X) holds 

)7 h (f; x) = y* (f; x) - f "  (Xo)lo(x ) - f "  ( x , ) l , ( x ) .  

The error En( f ;  x) of a spline interpolation is defined by 

E h (f; x) = f ( x )  - Yh (f; x).  

Now let 

]]h]] = max hi, and ]]g(x)]] = max [g(x)], 
l< j<__n  a<_x<_b 

then iffE C 4 [a, b], the error satisfies the following inequality 

Ilgh(f;  X)[[ < K ( f ) ,  Ilhl[ 4 

liEn'(f; x)ll _-< K*(f ) l lh l l  ~ �9 

(1.7) 

(1.8) 

(1.9) 

(1.10) 

(1.11) 

(1.12) 
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Errors in cubic spline interpolation 109 

The purpose of this paper is to find the best possible values for the constants K ( f )  and 
K*( f ) .  

In [2] and [3] an integral representation for the error is used in order to obtain error 
estimates. 

Eh(S; X):  i-~ K(X, t)S Iv(t)dt 
d u 

(1.13) 

E*(f; x )=  K*(x, t)flV(t)dt 
a 

where K(x, t) and K*(x, t) are functions of the class C 2 [a, b] with respect to x and t. 
Obviously the following relations hold 

x)l s( lK(x, t)lat.ll:IVll !Eh(f; 
./ u 

(1.14) 
/ * h  

Atkinson [3] derives the following bounds for the integral of IK* (x, t)l, in cases of uniform 
meshes 

.00156 Hhl] z ( x -  Xi)(Xi+ 1 -- X) < f [ I K* (X, t ) l  d t  < 

<l.18[Ihll2(x-x~)(x,+l-x) ,  x , < x < x , + l ,  O < i < n - 1 .  (1.15) 

An improved version of this result will be given in section III. 

2. Relation between Cubic Spline Interpolation and Piecewise Cubic Hermitian Interpolation 

The classical piecewise cubic Hermitian interpolation can be defined by the following relations 

y ~ ( f  ; x)~C'  [a, b] 

y ,  (/ ;  x) = Yi + al (x - xi) + �89 b i (x - x,) 2 + ~ c i (x - xi) a 
for x i < x < x i +  1, O<i<_n-1  (2.1) 

Yu(f; xi) =f(xi)  O< iN n. 
Y'n(f ; xi) = f '  (xi) 

Therefore the piecewise cubic Hermitian interpolation is a piecewise cubic function, having 
a continuous first derivative on [a, b]. Furthermore, i f f e  C 4 [a, b], the error can be expressed 
as follows 

E u (/;  x) = / ( x )  - Yu (/;  x) = (x - xi)2(x - x~ + a)zf I v -  (4,) 
4! 

for x i < x < x i + l ,  xi<=~i<xi+l, O < _ i < n - 1 .  (2.2) 

which is a classical result. 
Therefore the order of the approximation is O (]lhll4), which is in agreement with the errors 

Eh ( f  x) and E~' (f; x) of the spline interpolations. 
The above description shows that a similarity exists between cubic spline interpolation and 

piecewise cubic Hermitian interpolation. 
Let us denote the difference of the two approximations by z(x) in order to examine this 

similarity 

z(x) = Yu ( f  ; x)--Yh(f; X) = Eh(f  ; X ) -  Eu(f ;  x) (2.3) 

and similarly : 
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z* (x) = YH (f; x) - y* (f; x) = E* (f; x) - E n (f; x).  

Then it follows from (1.12) and (2.2) 

Hz[[ = O([[h[[4), ]]z*ll = O(Nh[[4), i f f ~ C 4 [ a ,  b].  

Obviously z(x)  and z* (x) are piecewise cubics, satisfying the relations 

z(~)~c ~ [a, b], z*(~)~C ~ [a, b]. 

z(x,)--0, z*(xi)--0, f o r 0 < i < n .  
t . ! . ! . - -  z'(xi) = Eh(f ,  x i ) - -EH( f ,  x,) = Eh(f ,  xi), for 0<  iN n 

, :  , t  . , . z (x,) = E h ( f ,  x i ) - -EH( f ,  xi) = E* ' ( f ;  xi), for 0-< iN n. 

Now define a set of functions Qi(x) as follows 

(x - xi) i_+1. , _ = < O <- i <- n - 1  \ hi+a / x i < x  xi+i, 

\ h i /I ' X i _ l ~ X ~ X i ,  l < i < _ n .  

0 x ~ X i _ l ~  x ~ x i +  1 . 

P. Sonneveld 

(2.4) 

(2.5) 

(2.6) 

(2.7) 
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It follows that Qi(x) is a piecewise cubic function belonging to C 1 [a, b], and satisfying the 
relations 

Q i(xj) = 0 

, {~ if i % j  for 0 -< i<n ,  O < = j < n .  (2.8) 
Q i ( x j )  -= (~ij = if i = j  

By differentiating (2.7) two times with respect to x, we get 

2 
Q'i'(xj+) - hj+l {2~ij-Jf-l~i,j+l} 

for O < i < n ,  O < j < n - 1  

2 {2(~ij+(~ij_l~ Q'/(~j-) = ~ 

for O<_i<_n, l < j < n .  (2.9) 

Now from (2.8) and (2.6)it follows that z(x) and z* (x) can be expressed in terms of the func- 
tions Qi(x) 

n 

z(x) = E z'~Q,(~), z', = z'(~i) 
i=0  

* ' =  z*'(xi) .  (2.10) z*  (x) : z*'  Q~(x) , z ,  
i=O 

From (2.9)it is obvious that z ( x ) a n d  z*(x) have second derivatives which in general are 
discontinuous in the mesh-points. Furthermore using the definitions (2.3) and (2.4) we find the 
following relations 

6z"(x~) = 6E[( f ;  x~) - 6E~( f ;  x,) = - 6Eh( f ;  xi) 
6z*"(xi) = - 6 E h  (f; xl) for 1 < i<  n -  1 (2.11) 

where 6g (x) = g (x + ) - g ( x - ) .  
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Substituting (2.9) and (2.10) in (2.11), we find the following n -  1 relations between the z'i and 
I! . 6Eu (f, Xi) 

f f ] ii , a. 2i zi-1 + 2zi + #i zi + 1  = j'- �89 - -  ( ~ E H  (f ,  xl) 
hi+hi+~ 

b. ,].izi*'_l+2z*'+ *' ~ hih~+l 6EH(f, " 
# i Z i + l -  2 hiq_hi+l 

h ih i+l  

where 21 and #i have the meaning as defined in (1.3). 
Furthermore we find from (2,3) 

z'(xo) = z'(x.)= 0 

and from 2.4) 

z*"(Xo) = E*"(f; X o ) - E h ( f ;  Xo)= - E h ( f ;  Xo) 
z*"(x,) = E* ' ( f ;  x,) - E h ( f ;  x.) = - E h ( f ;  x,) i 

from which it follows by substitution of (2.9) and (2.10) 

2z*'+z*'  = +�89 Xo) 
. , _  ., ~ ,, . 

Z n -I'-Zn- 1 = - - i h n E H ( f ,  Xn). 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

The system (2.12.a) together with (2.13), yields a uniquely solvable system of equations for 
the zj if 6En(f; x~) are known, and so does the system (2.12.b) together with (2.15) for the z j .  

In order to obtain an expression for 6E'~(f; xi) we examine Taylor's expansion forf(x) in the 
neighbourhood of x = xi 

' f (x)  =f(xi)  + (x ' 1 2 ,, 1 3 ,,, - x i ) f  ( x i )+y(x -x i )  f (xi)+-g(x-xi) f (xl) 

-I-  f x  (x6t )3 f lV  (t)dt " (2.16) 
i 

= Si(x) + E , (x ) .  

The piecewise cubic Hermitian interpolation off(x)  can be written as 

Yu(U; x)= yu(Si; x)+ yu(Ei ;x ) ,  (2.17) 

and since &(x) is its own piecewise cubic Hermitian interpolation this can be reduced 

YH(U; X)= Si(x)+ yH(Ei ;x ) .  (2.18) 

Hence it follows for E n (f;  x): 

E H (f;  x) = S i (x) + Ei (x) - Si (x) - YH (Ei ; x) 
= Ei (x) - Yn (E, ; x) = EH (E, ; x).  (2.19) 

Now since E, (x,) = El (x,) = 0, the following relations can easily be verified 

yu(Ei ; x) = Ei(xi + j { x -  x ' -  Qi(x) - Qi + * (x) } [ 

+E'i(x,+l)Q,+,(x ), for xi< x <  xi+~ (2.20) 

Yn(Ei; x) = E'(xl- j { x ' -  x + Q'(x) + Qi- ~ (x) } + h i  

+E',(x,_,)Q,_~(x), for X i _ l ~ X ~ X  i , 

Differentiating (2.20) two times with respect to x and substituting x = xi, we find by making 
use of (2.9) 
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2 
y~ (Ei; xi +)  : h~+-~ {3Ei(xi+ 1) - E'~(xi + 1)hi +1 } 

(2.21) 

2 { 3 E i ( x i _  1) + E t i ( x i  - 1)hi} y'~ (E,; x , - )  = ~ 

Substituting the integral expression for Ei(x), given by (2.16), we can reduce (2.21) to the 
following form 

rt . ( xi + 1 
yH(EI, x i + ) =  (Xi+l--t) 2 ( x i_ t ) f l v ( t )d t  

J 
(2.22) 

y~ (Ei; x i - )  = (xi-1 - t) 2 (x i -  t ) f ,v  (t) d t .  
h{ 

Now if we substitute these results in (2.19) and bear in mind that E'{(xl) =0, we finally arrive 
at the following result 

f x  i+ l  E " l r ' X i + )  -= Qi(t)f 'v(t)dt,  O < _ i < n - 1  
H ~ J  , i 

(2.23) 

f 
xi  - 1 

e ~ ( f ;  x , - )  = ai(t)flV(t)dt,  l < i < _ n .  
xi  

from which it follows 

~E~" ( f  ,. x~) = x,_ l Qi(t)fIV (t)dx = , Qi( t ) fIv  ( t)dx for 1<_ iN n - 1  . (2.24) 

With the aid of (223) and (2,24), we can now reduce the equations (2.12), (2.13) and (2.14) to 
the following form 

a. ~2~z)_ l+2z)+#jz)+ ~ = R j ,  l<__j<=n-1 

(~'o = ~'. = o .  

{ 2~z ,* '_ l+2z* '+#jz j*+l=l j  O<j<=n (2.25) 

2 o = # . = 0 ,  # o = 2 . =  . 
b. 

with 

f 
b 

R j =  �89 Qj( t ) f 'v ( t )dt ,  O < j <  n 
g 

vj = # jh j+l ,  O < j < n - 1  

v, = 2, h, = h, .  

The systems (2,25.a) and (2.25.b) have the same structure as the defining equations (1.3), 
and can also be derived directly from the defining equations. This is done by substituting 
P i = Y'h ( f ;  x i) = f ' (xi)  - z'i in ( 1.3. a). Applying a Taylor series expansion with integral remain der 
to the resulting right-hand members, yields again the systems (2,25). 

Although this procedure is much easier to deal with, the present derivation of the equations 
(2.25) yields some more information, and seems to be more consistent with the development of 
an error analysis. One of the consequences of the system (2.25) is the possibility of deriving the 
kernels K(x ,  t) and K* (x, t) as defined in (1.13) and all their properties from the system (2.25) 
together with (2.3) and (2.20). This, however, is beyond the purpose of this paper. 

3. Error Bounds 

For the purpose of obtaining bounds on z (x) and z* (x) we make use of the fact that a uniform 
upper bound for the right-hand members of (2.25) is also a uniform upper bound for the solu- 
tion. For the sake of simplicity this will be shown for the system (2.25.a) only. 
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The system reads 

2 j z )_a+2z )+p j z )+ l=Rj ,  l < j < n - 1  
' ' . = 0 .  ZO -~ Z 

Let Iz'~[ = max Iz)], then the following inequality holds: 
l <=j<=n-1 

12z'il = IRi - 2i z ' i -1-  lzi z'i + d < IRil + Iz'i[ 

since 21 + #~ = 1. It follows 

[z'i[ < IRil . 

Now let M = max IRjl, then 
l<_j<_n-1 

Izj[ =< M ,  l=<j< n - 1 .  

In the same way we have 

Iz]'l < M * ,  O<j< n 

where M* = max [Rj[. 
O<j<n 

In (2,25) Rj is given by an integral, which can be rearranged in the following form 

hjhj+ l f a g~ = �89 hj~-~j+l 0 (1 - t)2t {h2+ l f lV(xj+ hi+ a t) - hZfW(xj - hit)} dt 

for l < j < n - 1  

Ro = ~h 3 f~  ( l_ t )2 t f ,V(xo+hl t )d t  

= - ~ h n  R,  1 3 ( l _ t ) 2 t f , V ( x _ h , t ) d t  
0 

Now since (1- t )2 t  is a non-negative function it follows 

+hi+ 1) IlfIV[] , l<=j<=n-1 Iejl < ~  h~hi+l(h2 2 
hi+ hi+ 1 

[Ro[ < ~ hal[fIV]] �9 

IR.I < ~4 hallfXVll �9 

Using the mesh norm, (3.7) can be simplified by 

Igjl < ~ l l h l l a l l f W l l ,  O < j < n .  

Applying (3.4) we get 

[zj] < -~4 [Ihll3 [[fIVl[, l < j < n - 1 .  

From (3.9)we can construct a bound on z(x) by using the relation (2,7) and (2.10) 

z ( x )  = ( x -  x , ) ( x ,  + 1  - x) 
h2+1 {z;(x,+~--x)--z',+l(x--xi)} 

for x i < x < x i + l , 0 <  i<_n--1 

from which it follows 

Iz(x)l _-< (x -x i ) (X~+l-X) .  Ilhl[ 3 
24 hi + 1 

f o r x i < x < x i + l ,  O < i < n - 1 .  

113 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.11) 
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Finally using the relations (2,3) and (2,2) 

Eh(f; x) = En(f; x)+z(x) 

E n (/ ;  x) = ( x -  xi) 2 (x~ +1 - x) 2 / iv  (~) 
24 

we arrive at the result 

(3.12) 

IEh(f; X)[ < (X--Xi)(Xi+l--x) { [Ihl[3~ 
= 24 (x-xl)(xi+ l - x )  + h~+~J IIf~vl[ (3.13) 

for Xi~X~Xi+l, O < i < n - 1 .  

The same procedure applied to z*(x) leads to the same result for E~(f; x )  

Ilhl?  [E* (f; x)[ = ( (X-- Xi)(Xi+ 1 2 4  -- X) (X-- Xi)(X~+ 1-  X) + h~+~ J [[f~Vl] �9 (3.14) 

This last result is somewhat more specific than the result Atkinson obtained in [-3] for E*  (f; x). 
In fact his bounds for the integral in (1.15) can be improved upon in the following way: 

Let e be any positive number. Then for every fixed x~[xi; xi+l] a function f exists with 
[If~v[] -- 1, so that:  

[K*(x, t ) ldt-e< lEt ( f ;  x)l < Ig*(x, t)ldt. (3.15) 

It follows from (3.15) and (3.14): 

fa { Ilhl[3~ (3.16) blK*(x, t)[dt < (x-xi)(xi+l--x) (x -x i ) (x i+l -x )  + h~+~ J 
= 24 

Furthermore for any v > 1 a function g(x) exists, satisfying the relations: 

glV(x)=(__l)J{l__(X--XJ) v (XJ+l--X)v 1 
\ h s + l /  \ hs+l / ) ,  xs<x<-_xs+l, O<=j<n-1. (3.17) 

Then [Ig~Vll = 1, and it follows from (3.6): 

ej  = ( - l y l e j l .  

Iejl = ~ hjhj+l (h} + h~+ 1) (1 - 0, hj+h~+ 1 1 =<j__< n -  1 (3.18) 

ha(  12 l eo [=  1 - 0  Ie.I h 3 ( 1 - 0 ,  ~ -  
24 ' = (v + 2)(v + 3)  

Introducing the mesh ratio fi as follows: 

Ilhll 
fi = max - -  (3.19) 

1__<j__<, hj 

we can write 

Rj = ( '  lylRj[ 

m < IR~I < M (3.20) 
with 

11hl[3 ( 1 - 0  = [[hl[3 { 12 i}  M 
M = ~ ~ -  1 (v + 2)(v + 3 ' m =  fi~ 

,t Now we can express zj as follows 
, t  zj = ( -  l y (M-6~) ,  0 <  6 i<  2M (3.21) 

and applying the same reasoning as in the beginning of this chapter we get 
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I hj] = 6j < max ( M -  Iejl) -- M - m .  
J 

*' satisfy the relations: Hence the zj 
, /  

zj -- ( -  1)qz*/I, 0_<__j=< n .  
m <  [z*'l < M 

Hence the error E* (9; x) can be expressed as follows 

[E~ (g;  x)[ = ( x -  xi)(x  i +1 -- X) -{ (X-- Xi)(X i+1- X) m + Oi(M-- m)}- 
24 + hi + 1 

with 0 <  01< 1. So ]E*(g; x)[ has the following lower bound" 

]~(x-xi)(xi+l-x)24 ~ m  } 1 -  x, t + _-< IE;"(o; 

Since 

IE*(g; x)[ < Ig*(x, t)ldtllgWl[ = [K*(x, t)[dt 
a a 

and using (3.20), we find ifv tends to infinity : 

(x-xi)(xi+l-x){ ilhllZ ~ fb 
24 (X--Xi)(X~+I--X) + ~ - j  _--< ~ IK*(x, t)ldt. 

Combining (3.16) and (3.26) we arrive at: 

{ Hhll ]' i (x-xl)(xi+l-x)24 (x-xi)(xi+l-x) + --fi3-j = < ~ [g*(x, t)[dt _< 

115 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

[Ihil[ = max {hi, hi+ 1} (4.2) 
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with x j_ 1 <= r < xj + 1, 1 <__ j < n -  1.  
Introducing the local mesh norm 

xi, xi+l 1,{ } 
= 24 (x-xi)(x,+x-x)+~llhll 2 (3.27) 

If the mesh is uniform, then fl = 1, and we have exactly : 

f i [g  (x, t)ldt = {(x - x,)(xi +1 - x) + II hll 2 } (3.28) 
(x xi) (x, X) +1 

24 

4. Improvement of the Bounds on Eh(f; x) i f f~CS[a,  b] 

The error of optimal cubic spline interpolation can be more specifically bounded i f fe  C 5 [a, hi. 
In that case an integration by parts can be applied to the integrals in (3.6) 

Rj=�89 hj+hj+lhjhj+l f l  (1 - t )2  t{hj+l f 2  IV (xj+hj+lt) - -  h 2 "lv'.iJ t x j  - hjt)}dt = 

_1 hjhj+l h~+l-h] fiV(xj) + 
2 hj+hj+ 1 12 

+ y2 ~ ( 1  + 3t)[ha+ lflV(xjq-hj+ lt)+h}f'V(xj-hjt)]dt (4.1) 

= (hJ+l-hj)hj+l iv 1 24 f (x j) + ~ h3+1 + ha h~ h j+ if  v (~j) 
hjq- hj+ 1 
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and the local mesh ratio: 

max~llhill ]lh~][ ~ (4.3) 
/~=  [ h~ ' hi+lJ  

then it follows 

Ihi+lhi(hi+~-h~)l = ~ 1 - ~ Ilhill 3 . (4.4) 

Now if the mesh is uniform,/~ equals 1 and hence we may regard 1 - 1//3~ as a local measure for 
nonuniformity 

1 
1 - ~ = ei, O < e , <  1. (4.5) 

If the local nonuniformity is bounded by: 

~i<e, for l < i < n - 1  (4.6) 

then 

g,(1-e,) < �88 if e >  1 
ei(1 - ei) < e(1 - e) if e < �89 (4.7) 

Define the monotonic  nondecreasing function 0(e) as 

1, �89 
0(~)= 4e(1-e) ,  0-<~-<�89 (4.8) 

then it follows: 

]hlh~+l (hi+~- hi)[ < �88 3 < �88 3 �9 (4.9) 

The expression (4.1) for Rj can now be bounded:  

IRjl < ~ [[hl[311f~Vll +~o Ilhll41tfVlr) �9 (4.10) 

If the mesh is nearly uniform, the first term of(4.10) will be very small; quantitatively we can 
write 

IRjl = O(~llhll 3 IIf*Vll)+ O(llhll411fVll). (4.11) 

If ~-- O(llhll 2) 

IRj[ < l l lh l l  4 [if vii + 0 ([Ih[I s IlfIVl[). (4.12) 

The result (4.12) has a bearing on parametric spline interpolation of smooth curves, where 
only nearly uniform meshes can be constructed if uniform meshes are required. 

Applying (3.4) we get: 

Iz}l < ~)Ilhll3llflVll +~ollhll411fvl[ �9 (4.13) 

and according to (Z6) it follows: 

IE;(f; xj)l _-< 09~ Ilhll311f~Vll +~ollhll41lfVll �9 (4.14) 

This result is an extension of the statement 

IE;(f; xj)l = O(llh[I 4) (4.15) 

for nearly uniform meshes. 
Finally by applying (3.10) and (3.12) we arrive at the following bound for Eh(f; X): 
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~[If'V][ [ O(e)Ilhll-] IE,,(f; x)l <(x-x,)(x,+~-x) l lh l l  2 ( %  L ~+ h~---~,~J + 
IlfVll Ilhll 2 
60 h~+~ J ' 

117 

(4.16) 

which bound is much more specific than that given by (3.14). For uniform meshes the expres- 
sion (4.16) reads: 

~[If~vll II/Vll [[h[I} 
[Eh(f; x)[ _--< (x--x~)(xi+ 1 -x)llhl[ 2 (--96~ + 60  , xi_-__ x__< x~+1. (4.17) 

Further refinements of the error analysis can be made by examining the equations (2.25) 
thoroughly; this, however, is beyond the purpose of this paper. 

Extensions of the theory are possible in cases of periodic splines, which occur in approxima- 
tion of periodic functions and in parametric spline interpolation of closed smooth curves. 
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